ContohSoal: Aplikasi Turunan Fungsi Trigonometri I Pbm 12 Setelah mempelajari perbandingan trigonometri dasar sudut istimewa identitas trigonometri aturan sinus aturan cosinus dan persamaan trigonometri selanjutnya kita akan mempelajari aplikasi trigonometri. Format file: PPT Ukuran file: 2.2mbTanggal pembuatan soal: November 2018 Jumlah soal Aplikasi Turunan Fungsi Trigonometri I Pbm 12 : Untukmenjawaban soal-soal turunan fungsi trigonometri yang sederhana kita masih sanggup memakai rumus dasar. Akan tetapi, untuk soal yang lebih rumit kita harus memakai hukum rantai. Aturan rantai pada turunan fungsi trigonometri prinsipnya sama dengan hukum rantai pada turunan fungsi aljabar. PostingKomentar untuk "Soal Cerita Turunan Fungsi Aljabar - Bank Soal Matematika Fungsi Turunan Pdf : Soal dan pembahasan aplikasi turunan,turunan fungsi aljabar." Popular Posts Kunci Jawaban Tebak Gambar Level 9 Nomor 1 Sampai 20 : Kunci Jawaban Tebak Gambar Level 10 Nomor 1 20 Beserta Gambarnya Lengkap Cademedia / Ini adalah kunci jawaban hu6B. Rumus Turunan Fungsi Trigonometri dan Perluasannya – Rumus turunan fungsi trigonometri penting untuk diketahui para siswa sekolah menengah saat belajar matematika. Trigonometri berupa fungsi sebuah sudut digunakan untuk menghubungkan sudut-sudut dengan sisi-sisi segitiga. Dengan kata lain, trigonometri merupakan ilmu yang digunakan untuk mengukur segitiga. Ketika mempelajari trigonometri, akan ada beberapa identitas umum yang digunakan, mulai dari fungsi sinus, cosines, tangen, secan, cosecan, dan kotangen. Keenam identitas trigonometri tersebut diterapkan dalam sejumlah rumus. Identitas dan rumus ini menunjukkan gabungan antara fungsi serta digunakan untuk menemukan sudut segitiga. Lebih lanjut, rumus trigonometri ini dikembangkan lagi menjadi rumus turunan fungsi trigonometri. Sesuai dengan sebutannya, fungsi ini untuk menemukan turunan dari fungsi trigonometri atau tingkat perubahan yang terjadi terkait suatu variabel. Dalam hal ini, terdapat beberapa rumus khusus dalam turunan fungsi trigonometri. Sebagai materi dasar, penting untuk mengetahui pengertian dari turunan fungsi trigonometri, berbagai rumus, dan cara operasinya. Selain rumus umum, ada juga perluasan turunan fungsi trigonometri lain yang sering digunakan. Perluasan turunan fungsi trigonometri ini digunakan jika terjadi pada beberapa kondisi variabel tertentu. Berikut beberapa rumus turunan fungsi trigonometri dan rumus perluasannya yang perlu kalian ketahui. Penemu Rumus Turunan Fungsi TrigonometriPengertian Turunan dan Turunan Fungsi1. Pengertian dari Turunan2. Pengertian dari Turunan FungsiRumus Dasar dari Turunan dari Turunan FungsiMengenal Trigonometri dan IdentitasnyaRumus Turunan Fungsi Trigonometri DasarRumus Perluasan Turunan Fungsi TrigonometriContoh Soal Sir Isaac Newton. Gottfried Wilhem Leibniz. Turunan merupakan salah satu cabang diferensial kalkulus. Sejarah perkembangannya juga berhubungan erat dengan perkembangan kalkulus. Konsep turunan dipikirkan pada saat yang bersamaan oleh Sir Isaac Newton 1642-1727, ahli matematika dan fisika bangsa Inggris dan Gottfried Wilhem Leibniz 1646-1716, ahli matematika bangsa Jerman. Sejarah perkembangan kalkulus dibagi menjadi beberapa zaman sebagai berikut. Pada zaman kuno, pemikiran integral kalkulus sudah muncul, tetapi belum dikembangkan secara baik dan lebih teratur. Fungsi utama dari integral kalkulus adalah perhitungan volume dan luas yang ditemukan kembali di Papirus Moskwa dari Mesir. Pada Papirus tersebut, orang Mesir dapat menghitung volume piramida yang mereka bangun. Selanjutnya, Archimedes mengembangkan pemikiran ini lebih jauh lagi. Pada zaman pertengahan, matematikawan yang berasal dari India bernama Aryabhata, menggunakan konsep kecil tak terhingga pada 499 dan menunjukkan masalah astronomi dalam bentuk persamaan diferensial dasar. Persamaan ini kemudian membawa Bashkara II pada abad ke-12 melakukan pengembangan terhadap bentuk awal turunan. Pada abad ke-12, seorang Persia bernama Sharaf al-Din al-Tusi menemukan turunan dari fungsi kubik, sebuah hasil yang penting dalam kalkulus diferensial. Leibniz dan Newton mendorong pemikiran-pemikiran ini bersama sebagai sebuah kesatuan dan kedua orang tersebut dianggap sebagai penemu kalkulus secara terpisah dalam waktu yang hampir bersamaan. Turunan memiliki banyak aplikasi dalam bidang kuantitatif. Salah satunya adalah hukum gerak Newton yang kedua yang menyatakan bahwa turunan dari momentum suatu benda juga sama dengan gaya yang diberikan kepada benda. Laju reaksi dari reaksi kimia juga termasuk turunan. Dengan fungsinya dalam bidang ekonomi, turunan juga dapat memberikan strategi yang terbaik untuk perusahaan yang sedang dalam persaingan. Turunan dapat menghitung efektivitas waktu dan tenaga kerja agar biaya menjadi minimum. Selanjutnya, turunan juga dapat menghitung berapa jam pabrik harus bekerja agar keuntungan menjadi maksimal. Dalam materi turunan ini banyak yang berpendapat sangat sulit untuk dikerjakan, terlebih materi turunan ini termasuk dalam materi pokok matematika, turunan merupakan cabang dari pelajaran kalkulus, pada dasarnya materi kalkulus ini memerlukan ketelitian dan kecermatan dalam menggerakkannya. Oleh karena itu, artikel ini ditulis dengan tujuan mempermudah dalam pembelajaran para siswa. Artikel ini menyajikan materi beserta soal dan pembahasan yang mudah dipahami. Diferensial kalkulus itu sangat penting peranannya dalam kehidupan sehari-hari, dunia bisnis maupun dalam dunia sains. Dengan mempelajari diferensial kalkulus, dapat membantu arsitek dalam membuat konstruksi bangunan, melakukan pencampuran bahan bangunan, membuat tiang-tiang, langit-langit pada bangunan. Penggunaan lain dalam difererensial kalkulus, yaitu dalam pembuatan pesawat dan kapal laut. Turunan juga memiliki fungsi penting, apalagi nantinya dapat berguna dalam bidang ekonomi, dalam menghitung nilai minimum dan maksimum sebuah keuangan. Mempelajari turunan tidaklah sulit, hanya saja perlu ketelitian agar turunan yang dihasilkan nanti benar. Selain itu, turunan hanya menggunakan konsep hitung yang dasar seperti perkalian, pembagian, penjumlahan, dan pengurangan. Tanpa ketelitian mengerjakan turunan memang terkadang sulit dan perlu diperiksa ulang hingga benar. Pengertian Turunan dan Turunan Fungsi 1. Pengertian dari Turunan Turunan atau deriviatif adalah pengukuran terhadap fungsi yang berubah seiring perubahan nilai input. Secara umum, turunan menyatakan proses suatu besaran berubah akibat perubahan besaran yang lainnya. Contohnya turunan dari posisi sebuah benda bergerak terhadap waktu ialah kecepatan sesaat oleh objek tersebut. Proses dalam menemukan sebuah turunan disebut dengan diferensiasi, sedangkan kebalikan dari sebuah turunan disebut dengan anti turunan. Teorema fundamental kalkulus mengatakan bahwa anti turunan, yaitu sama dengan integrasi. Turunan dan integral adalah dua fungsi penting dalam kalkulus. . . . . Dengan keterangan adalah simbol untuk turunan pertama. adalah simbol untuk turunan kedua. adalah simbol untuk turunan ketiga. Simbol yang lainnya selain dan ialah dan. 2. Pengertian dari Turunan Fungsi Turunan fungsi diferensial, yaitu suatu fungsi lain daripada sesuatu fungsi sebelumnya, misalkan dalam fungsi f menjadi f’ yang memiliki nilai tidak beraturan. Suatu konsep dari turunan yang menjadi bagian utama dalam kalkulus ditemukan oleh seorang ilmuwan ahli matematika dan juga ahli fisika berkebangsaan Inggris bernama Sir Isaac Newton dan ahli matematika dari Jerman bernama Gottfried Wilhelm Leibniz. Umumnya, turunan diferensial ini biasa dipakai sebagai suatu alat dalam menyelesaikan berbagai macam masalah-masalah di bidang geometri dan juga mekanika. Suatu konsep turunan fungsi yang secara universal atau menyeluruh banyak sekali digunakan di dalam berbagai bidang keilmuan. Sebut saja dalam bidang ekonomi digunakan untuk menghitung berupa biaya total atau total penerimaan. Adapun dalam bidang biologi digunakan untuk menghitung laju pertumbuhan organisme. Selanjutnya, dalam bidang fisika digunakan untuk menghitung kepadatan kawat. Untuk bidang kimia digunakan untuk menghitung laju pemisahan. Terakhir, dalam bidang geografi dan sosiologi digunakan untuk menghitung laju pertumbuhan penduduk dan masih banyak lagi. Rumus Dasar dari Turunan dari Turunan Fungsi Menenai soal aturan-aturan yang ada didalam kosep turunan fungsi adalah sebagai berikut fx, menjadi f'x 0. Apabila fx x, maka f’x 1. Aturan pangkat apabila fx xn, maka f’x n X n – 1. Aturan kelipatan konstanta apabila kf x k. f’x. Aturan rantai apabila f o g x f’ g x. g’x. Mengenal Trigonometri dan Identitasnya Sebelum mengetahui rumus turunan fungsi trigonometri, perlu dipahami terlebih dahulu apa yang dimaksud dengan fungsi trigonometri. Seperti disebutkan sebelumnya trigonometri merupakan fungsi yang digunakan untuk menghubungkan sudut-sudut dan sisi-sisi dalam segitiga. Dalam hal ini, sudut sinus, cosinus, dan tangent merupakan fungsi utama dari trigonometri. Kemudian dari ketiga fungsi ini diturunkan menjadi fungsi trigonometri lainnya yaitu secan, cosecan, dan kotangen. Berikut karakteristik dari fungsi dasar trigonometri yang perlu kalian pahami Sinus, yaitu perbandingan sisi depan sudut segitiga dengan sisi miring. Perbandingan ini digunakan dengan catatan segitiga tersebut berupa siku-siku, atau salah satu sudutnya memiliki besaran 90 derajat. Untuk fungsi ini, nilai sinus positif berada di kuadran I dan II, sedangkan kuadran III dan IV berupa nilai negatif. Cosinus, yaitu perbandingan sisi segitiga yang terletak di sudut dengan sisi miring. Sama seperti sinus, perbandingan ini digunakan dengan catatan segitiga tersebut adalah segitiga siku-siku atau salah satu sudutnya memiliki besaran 90 derajat. Namun, dalam perbandingan ini nilai positif berada di kuadran I dan IV, sedangkan kuadran II dan III berupa nilai negatif. Tangen, yaitu perbandingan sisi segitiga yang terletak di depan sudut dengan sisi segitiga di bagian sudut. Perbandingan ini digunakan dengan catatan segitiga tersebut berupa siku-siku, atau salah satu sudutnya memiliki besaran 90 derajat. Untuk perbandingan ini, nilai positif berada di kuadran I dan III, sedangkan kuadran II dan IV berupa nilai negatif. Rumus Turunan Fungsi Trigonometri Dasar Setelah memahami fungsi dasar trigonometri, berikutnya perlu diketahui turunan fungsi trigonometri. Fungsi turunan ini tidak lain digunakan untuk mengetahui rumus turunan dari fungsi trigonometri dasar. Berikut beberapa rumus turunan fungsi trigonometri dasar yang perlu kalian ketahui Turunan dari f x = sin x adalah f x = cos x. Turunan dari f x = cos x adalah f x = -sin x. Turunan dari f x = tan x adalah f x = sec2 x. Turunan dari f x = kotangen x adalah f x = -cosecan2 x. Turunan dari f x = secan x adalah f x = sec x . tan x. Turunan dari f x = cosecan x adalah f x = -cosecan x . cotangen x. Rumus Perluasan Turunan Fungsi Trigonometri Selain beberapa rumus turunan fungsi trigonometri dasar, terdapat beberapa rumus perluasan yang tak kalah penting untuk diketahui. Fungsi perluasan ini digunakan jika ditemukan beberapa kondisi tertentu. Pertama, rumus turunan yang didapat dari turunan u terhadap x, dan fungsi perluasan kedua didapat jika variabel sudut trigonometrinya adalah ax+b. Berikut penjelasan rumusnya. Rumus perluasan turunan fungsi trigonometri I Turunan dari f x = sin u adalah f x = cos u . u’. Turunan dari f x = cos u adalah f x = -sin u . u’. Turunan dari f x = tan u adalah f x = sec2u . u’. Turunan dari f x = cot u adalah f x = -csc2 u . u’. Turunan dari f x = sec u adalah f x = sec u tan u . u’. Turunan dari f x = csc u adalah f x = -csc u cot u . u’. Rumus perluasan turunan fungsi trigonometri II Turunan dari f x = sin ax + b adalah f x = a cos ax + b. Turunan dari f x = cos ax + b adalah f x = -a sin ax + b. Turunan dari f x = tan ax + b adalah f x = a sec2 ax +b. Turunan dari f x = cot ax + b adalah f x = -a csc2 ax+b. Turunan dari f x = sec ax + b adalah f x = a tan ax + b . sec ax + b. Turunan dari f x = csc ax + b adalah f x = -a cot ax + b . csc ax + b. Contoh Soal Berikut ini terdapat beberapa contoh soal turunan trigonometri. Contoh 1 Turunkan fungsi berikut ini. y = 5 sin x Pembahasan y = 5 sin x y’ = 5 cos x Contoh 2 Diberikan fungsi fx = 3 cos x Tentukan nilai dari f /2 Pembahasan Perhatikan rumus turunan untuk fungsi trigonometri berikut ini. y = sin x adalah y = cos x. y = cos x adalah y = -sin x. y = tan x adalah y = sec2 x. y = cosec x adalah y = -cosec x cot x. y = sec x adalah y = sec x . tan x. y = cot x adalah y = -cosec2x. fx = 3 cos x. f x = 3 -sin x. f x = -3 sin x. Untuk x = /2 diperoleh nilai f x. f /2 = -3 sin /2 = -3 1 = -3. Contoh 3 Tentukan turunan pertama dari y = -4 sin x. Pembahasan y = -4 sin x. y’ = -4 cos x. Contoh 4 Diberikan y = -2 cos x. Tentukan y’. Pembahasan y = -2 cos x y’ = -2 -sin x y’ = 2 sin x Contoh 5 Tentukan y’ dari y = 4 sin x + 5 cos x. Pembahasan y = 4 sin x + 5 cos x y’ = 4 cos x + 5 -sin x y = 4 cos x -5 sin x Contoh 6 Tentukan turunan dari y = 5 cos x -3 sin x. Pembahasan y = 5 cos x -3 sin x y’ = 5 -sin x – 3 cos x y’ = -5 sin x -cos x Contoh 7 Tentukan turunan dari y = sin 2x + 5 Pembahasan Dengan aplikasi turunan berantai maka untuk y = sin 2x + 5 y = cos 2x + 5 . 2 -> Angka 2 diperoleh dari menurunkan 2x + 5 y’ = 2 cos 2x + 5 Contoh 8 Tentukan turunan dari y = cos 3x -1 Pembahasan Dengan aplikasi turunan berantai maka untuk y = cos 3x -1 y = -sin 3x -1 . 3 -> Angka 3 diperoleh dari menurunkan 3x -1 Hasil akhirnya adalah y’ = -3 sin 3x -1 Contoh 9 Tentukan turunan dari y = sin2 2x -1. Pembahasan Turunan berantai y = sin2 2x -1 y’ = 2 sin 2-1 2x -1 . cos 2x -1 . 2 y’ = 2 sin 2x -1 . cos 2x -1 . 2 y’ = 4 sin 2x -1 cos 2x -1 Contoh 10 Diketahui fx = sin3 3 – 2x Turunan pertama fungsi f adalah f maka f x =…. Pembahasan fx = sin3 3 – 2x Turunkan sin3 nya, Turunkan sin 3 – 2xnya, Turunkan 3 – 2xnya. Hasilnya dikalikan semua seperti ini fx = sin3 3 – 2x f x = 3 sin 2 3 -2x . cos 3 -2x . -2 f x = -6 sin 2 3 -2x – cos 3 -2x Sampai sini sudah selesai, tetapi di pilihan belum terlihat, diotak-atik lagi pakai bentuk sin 2 = 2 sincos f x = -6 sin 2 3 -2x . cos 3 -2x f x = -3 . 2 sin 3 -2x . sin 3 – 2x . cos 3 -2x f x = -3 . 2 sin 3 -2x . cos 3 – 2x . sin 3 -2x _____________________ sin 2 3 -2x f x = -3 sin 23 – 2x . sin 3 -2x f x = -3 sin 6 – 4x sin 3 -2x atau f x = -3 sin 3 -2x sin 6 – 4x Contoh 11 Diketahui fungsi fx = sin2 2x + 3 dan turunan dari f adalah f’. Maka f’ x = … Pembahasan Turunan berantai fx = sin2 2x + 3 Turunkan sin2 nya, Turunkan sin 2x + 3nya, Turunkan 2x + 3nya. f x = 2 sin 2x + 3 . cos 2x + 3 . 2 f x = 4 sin 2x + 3 . cos 2x + 3 Demikianlah penjelasan tentang turunan fungsi trigonometri, semoga bermanfaat dan sampai jumpa di pembahsan selanjutnya. Jika ada yang masih kurang jelas atau pertanyaan lain terkait turunan fungsi trigonometri, sampaikan di kolom komentar. BACA JUGA Apa Itu Sifat Komutatif Pengertian, Rumus, dan Contoh Soalnya Limit Tak Hingga Pengertian, Soal, dan Pembahasan, serta Sejarahnya Pengertian Invers Matriks Konsep, Sifat, dan Istilah-Istilahnya Pengertian Konstanta, Variabel, dan Suku Beserta Contoh Soalnya Sifat Logaritma Pengertian, Fungsi, Rumus, dan Contoh Soalnya ePerpus adalah layanan perpustakaan digital masa kini yang mengusung konsep B2B. Kami hadir untuk memudahkan dalam mengelola perpustakaan digital Anda. Klien B2B Perpustakaan digital kami meliputi sekolah, universitas, korporat, sampai tempat ibadah." Custom log Akses ke ribuan buku dari penerbit berkualitas Kemudahan dalam mengakses dan mengontrol perpustakaan Anda Tersedia dalam platform Android dan IOS Tersedia fitur admin dashboard untuk melihat laporan analisis Laporan statistik lengkap Aplikasi aman, praktis, dan efisien You are here Home / rumus matematika / Soal Matematika 15 Soal Turunan Aljabar dan Trigonometri Guys, rumushitung ada soal matematika nih. Ada 20 soal tentang turunan fungsi aljabar dan trigonometri. Bagi kalian yang belum mempelajari bisa cari di laman Pada soal ini sudah ada pembahasannya. Jadi, kalian yang masih bingung cara mengerjakannya bisa melihat pembahasan soal. Ingat ! Rumus Turunan Aljabar fx = k → f'x = 0 k = konstantafx = x → f'x = 1fx = kx → f'x = kfx = kUx → f'x = kU'xfx = axn → f'x = = U ± V → f'x = U’ ± V’fx = U x V → f'x = U’ V + V’ Ufx = U/V → f'x = U’ V – V’ U/V2fx = Uxn → f'x = nUxn-1 . U'x Rumus Turunan Trigonometri fx = sin x → f'x = cos xfx = cos x → f'x = -sin xfx = sin ax → f'x = a cos axfx = cos ax → f'x = -a sin axfx = tan x → f'x = sec2 xfx = cot x → f'x = -csc2 xfx = sec x → f'x = sec x tan xfx = csc x → f'x = -csc x cot xfx = siny ax → f'x = y sin ax . a cos ax Soal dan Pembahasan Turunan Aljabar dan Trigonometri 1. Turunan pertama dari fx = 5x + 1 adalah . . . A. 5xB. 5C. 5x + 1D. 1E. 0 Pembahasan fx = 5x + 1f'x = 1 . 5x1-1 + 0f'x = 5 B 2. Turunan pertama dari fx = 5x2 – 10x – 3 adalah . . . A. 5x – 10B. 5x + 10C. 10x – 10D. 10x + 10E. 5x2 – 10 Pembahasan fx = 5x2 – 10x – 3f'x = 2 . 5x2-1 – 10 – 0f'x = 10x – 10 C 3. Diketahui f'x = 14 dan fx = 2x2 + 6x -9. Nilai x yang memenuhi setelah turunan adalah . . . A. 2B. -2C. 3D. -4E. 4 Pembahasan fx = 2x2 + 6x – 9f'x = 4x + 6 Maka,f'x = 144x + 6 = 144x = 14 – 64x = 8x = 2 A 4. Turunan pertama dari fx = 3sin 3x adalah . . . A. 3cos 3xB. -9cos 3xC. 9cos 3xD. -3cos 3xE. -9sin 3x Pembahasan fx = 3sin 3xf'x = 3 . 3cos 3xf'x = 9cos 3x C 5. Diketahui fx = 7x2 – 53x2 + 3x – 5, nilai dari f'3 = . . . A. 1520B. 2423C. 3155D. 2520E. 3255 Pembahasan fx = 7x2 – 53x2 + 3x – 5U = 7x2 – 5 → U’ = 14xV = 3x2 + 3x – 5 → V’ = 6x + 3 fx = U . Vf'x = U’ V + V’ Uf'x = 14x 3x2 + 3x – 5 + 6x + 37x2 – 5f'3 = 143 332 + 33 – 5 + 63 + 3732 – 5f'3 = 4227 + 9 – 5 + 18 + 363 – 5f'3 = 4231 + 2158f'3 = 1302 + 1218f'3 = 2520 D 6. Jika fx = 2f'x dengan fx = x2 + 3. Nilai x yang memenuhi adalah . . . A. 1 dan 3B. -1 dan 3C. -3 dan -1D. -3 dan 1E. -1 dan 1 Pembahasan fx = x2 + 3f'x = 2x Maka,fx = 2f'xx2 + 3 = 22xx2 – 4x + 3 = 0x – 1x – 3 = 0x = 1 V x = 3 Jadi,x = 1 dan 3 A 7. Diketahui turunan f'x = 12. Jika fx = 1/3x3 – 4x + 3 dan x adalah bilangan bulat positif, maka nilai x setelah diturunkan adalah . . .A. 0B. 1C. 2D. 3E. 4 Pembahasan fx = 1/3x3 – 4x + 3f'x = x2 – 4 Maka,f'x = 12x2 – 4 = 12x2 = 16x = -4 dan x = 4Nilai x yang bilangan positif adalah 4 E 8. Turunan pertama fx = 3x2 sin2 3x adalah . . . A. 6xsin2 3x – 3x sin 3x cos 3xB. 6xsin2 3x + 3x sin 3x cos 3xC. 3xsin2 3x + 3x sin 3x cos 3xD. 3xsin2 3x – 3x sin 3x cos 3xE. 6xsin2 x + 3x sin x cos x Pembahasan fx = 3x2 sin2 3xU = 3x2 → U’ = 6xV = sin2 3x → V’ = 2sin 3x . 3cos 3xatau V’ = 6sin 3x cos 3x f'x = U’ V + V’ Uf'x = 6x sin2 3x + 6sin 3x cos 3x3x2f'x = 6x sin2 3x + 18x2 sin 3x cos 3xf'x = 6xsin2 3x + 3x sin 3x cos 3x B 9. Diketahui fungsi fx = 9x2 + 16x + 9 dan gx = x2 – 3x + 4. Nilai dari f'g'3 = . . . A. 60B. 70C. 80D. 90E. 100 Pembahasan fx = 9x2 + 16x + 9f'x = 18x + 16 gx = x2 – 3x + 4g'x = 2x – 3 Maka,f'g'x = 182x – 3 + 16f'g'3 = 1823 – 3 + 16f'g'3 = 54 + 16f'g'3 = 70 B 10. Turunan kedua dari fx = 3x4 + 4x3 – 3x2 – 2x + 4 adalah . . . A. 36x2 – 24x – 6B. 36x2 + 24x – 6C. 36x2 + 24x + 6D. 12x2 + 24x – 6E. 12x2 – 24x – 6 Pembahasan fx = 3x4 + 4x3 – 3x2 – 2x + 4f'x = 12x3 + 12x2 – 6x – 2turunan pertama f'x = 12x3 + 12x2 – 6x – 2fā€x = 36x2 + 24x – 6 Bturunan kedua 11. Jika gx = 2x – 32, maka g'2 = . . . A. 1B. -1C. 2D. -4E. 4 Pembahasan gx = 2x – 32g'x = 2 2x – 32-1 . 2g'x = 22x – 3 . 2g'x = 42x – 3g'2 = 422 – 3g'2 = 4 E 12. Turunan kedua fungsi fx = csc2 x adalah . . . A. 2csc2 x cot xB. -csc2 x cot xC. -2csc2 x cot xD. csc2 x cot xE. -2csc x cot x Pembahasan fx = csc2 xf'x = 2csc x . -csc x cot xf'x = -2csc2 x cot x C 13. Jika fx = sin2 x – cos2 x, maka f'Ļ€/6 = . . . A. √3B. 0C. -√3D. 2√3E. -2√3 Pembahasan fx = sin2 x – cos2 xf'x = 2sin x . cos x + 2cos x . sin xf'Ļ€/6 = 2sin Ļ€/6 . cos Ļ€/6 + 2cos Ļ€/6 . sin Ļ€/6f'Ļ€/6 = 21/2√3/2 + 2√3/21/2f'Ļ€/6 = √3/2 + √3/2f'Ļ€/6 = √3 A 14. Jika px = x2 – 3 dan qx = 2x2 + 1, maka nilai p'2 – 2q'-2 adalah . . . A. 20B. 30C. 40D. 50E. 60 Pembahasan px = x2 – 3p'x = 2x qx = 2x2 + 1q'x = 4x Maka,= p'2 – 2q'-2= 22 – 24-2= 4 + 16= 20 A 15. Diketahui fx = 4x2 – 1/x2 – 2x + 1, maka f'-1 = . . . A. 1B. -2C. 3D. -4E. 5 Pembahasan fx = 4x2 – 1/x2U = 4x2 – 1 → U’ = 8xV = x2 → V’ = 2x f'x = U’ V – V’ U/V2f'x = [8x . x2 – 2x . 4x2 – 1]/x22f'x = 8x3 – 8x3 + 2x/x4f'x = 2x/x4f'x = 2/x3f'-1 = 2/-13f'-1 = 2/-1f'-1 = -2 B Itulah beberapa soal matematika tentang turunan aljabar dan trigonometri. Semoga yang rumushitung share di atas dapat menambah ilmu wawasan dan pengetahuan kalian. Semoga bermanfaat dan sekian terima kasih.

soal dan pembahasan turunan fungsi trigonometri